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a b s t r a c t

Open-circuit voltage (OCV) is widely used to estimate the state-of-charge (SoC) in many SoC estimation
algorithms. However, the relationship between the OCV and SoC cannot be exactly same for all batteries.
Because the conventional OCV–SoC differs among batteries, there is a problem in that the relationship
vailable online 21 September 2008
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of the OCV–SoC should be measured to estimate accurately the SoC. Therefore, a modified OCV–SoC
relationship based on the conventional OCV–SoC is proposed. Problems resulting from the defects of the
extended Kalman filter (EKF) can be avoided by preventing the relationship from varying. Also, in order to
improve the performance of the algorithm, measurement noise models of the Kalman filter are applied.
Thus, the measurement noise models allow the Kalman filter to overcome defects from the simplified
battery modelling and to separate the sequence for estimation of the state and weight filter. The SoC and
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. Introduction

The lithium-ion battery is a promising power source for hybrid
lectric vehicles (HEVs) due to its high specific energy and power.
o enable optimum use of the capability of the battery, the HEV
equires a battery management system (BMS) [1,2]. An estimation
f the state-of-charge (SoC) of the battery should be included in
rder to prevent the battery from being over or under-charged and
o manage the energy flows of the vehicle.

There are several ways to estimate the SoC of a battery [3–5].
he ampere-hour counting method is simple and easy to utilize,
ut it has problems such as an initial value error and accumulated
rrors. The open-circuit voltage (OCV) method is very accurate,
ut it needs a rest time to estimate the SoC and thus cannot be
sed in real time. To compensate for the shortcomings of these
ethods, the extended Kalman filter (EKF), which uses the plant
odel combining the two aforementioned methods, has been pre-

ented [4,5]. This method is known to be the optimum adaptive

lgorithm based on recursive estimation. To improve the perfor-
ance of the estimation, the model parameters should be chosen

orrectly. Nevertheless, the parameters of the battery model in
he EKF, such as the resistance, capacity and OCV–SoC, are not

� The submitted work was presented at the 38th IEEE Power Electronics Special-
sts Conference (PESC).
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ttery are estimated using the dual EKF with the proposed method.
© 2008 Elsevier B.V. All rights reserved.

onsistent due to differences in the SoC, temperature and ageing
6,7].

The relationship of the OCV–SoC differs among batteries and
herefore the use of this varying OCV–SoC data for the SoC esti-

ation algorithm results in an unacceptable error. In this study, a
ethodology for defining a new OCV–SoC relationship that is inde-

endent of the battery condition is proposed. The capacity, which
epresents the available energy in the battery, is changed to a new
alue due to the application of the proposed relationship and a
ewly defined capacity should be estimated. To achieve this, the
ual EKF [5,8] is used to estimate simultaneously the SoC and the
apacity.

. Proposed approach

.1. Modification of OCV–SoC

The conventional relationship of the OCV–SoC is obtained by
easuring the open-circuit voltage at each SoC. The relationship

annot be exactly the same for every battery. The relationship varies
ith the difference in capacity among batteries and presents dif-

erent results even if the batteries are fabricated from the same
aterials and structures, as demonstrated in Fig. 1. Therefore, it is
ifficult to apply conventional OCV–SoC data to the estimation algo-
ithm. From the viewpoint of the implementation of the algorithm,
n equivalent battery model is required, as shown in Fig. 2, and the
CV, as a function of SoC, is utilized as a voltage source. As shown in
ig. 1, the relationship of the OCV–SoC for nine different batteries

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:jun2u@pesl.snu.ac.kr
dx.doi.org/10.1016/j.jpowsour.2008.08.103
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Fig. 3. Proposed OCV–SoC.

Fig. 4. Nyquist plot measured by EIS.
Fig. 1. Conventional OCV–SoC.

s measured under the same conditions. The results exhibit con-
iderable variation, despite the fact that the batteries have almost
ame capacity. Thus, the use of the varying OCV–SoC relationship
mong batteries may cause an unacceptable error in the SoC esti-
ation. Measuring the OCV–SoC of each battery for improvement

f the estimation performance is a very time-consuming process.
herefore, a new OCV–SoC relationship must be considered.

In this investigation, a new concept of the capacity is defined on
he basis of the OCV, and the SoC is modified with respect to the
ew capacity. To determine the relationship, a cut-off OCV is cho-
en arbitrarily. In this work, the cut-off voltage is the set voltage,
.e., 3.6 V, as shown in Fig. 3, and the new relationship is config-
red using the set voltage as a reference voltage. As can be seen

n Fig. 3, a strong consistency among the OCV–SoC data of each
attery is achieved, regardless of the individual capacities. Thus, a
ingle OCV–SoC can be used for all batteries of the same type. How-
ver, the estimation algorithm using the proposed method caused
change in capacity and, therefore, the capacity must be estimated

n addition to the SoC.

.2. Equivalent electrical circuit model

Several researchers have formulated ways to extract the model
nd its parameters for a battery [9–12]. The modelling approach can
enerally be classified into two distinctive categories: a frequency
omain and a time domain. Impedance measurements of the bat-
ery using Nyquist plots, as shown in Fig. 4, are a representative
ethod of the frequency domain analysis. On the other hand, the
ime domain analysis uses experimental data of the voltage and
urrent of the battery, as shown in Fig. 5.

Fig. 2. Simplified battery model. Fig. 5. Voltage response with respect to current reference.



S. Lee et al. / Journal of Power Sour

Table 1
Parameters of simplified battery model.
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In this study, the current and voltage information of the battery
re analyzed to obtain the model and its corresponding parameters.
he extracted parameters of the battery through the time domain
nalysis are similar to those in Fig. 4 and the dynamic behaviour of
he battery can be utilized. The resulting simplified battery model
s shown in Fig. 2 and the parameters are given in Table 1. First,
he OCV, which refers to the equilibrium potential of the battery,
s modelled as an equivalent voltage source and is implemented
sing the proposed relationship. Second, the internal resistance of
he battery is modelled as a series resistance Ri. Finally, an RC par-
llel connection represents the charge transfer, double layer and
iffusion.

.3. Implementation of dual extended Kalman filter

The dual EKF is used to estimate the SoC and capacity of a
ithium-ion battery. This algorithm combines the two EKFs, one of

hich is the state filter, which estimates the SoC, and the other is
he weight filter, which estimates the capacity. At every time step,
he state filter uses an a priori value of the weight filter, while the
eight filter uses an a priori value of the state filter. Therefore, the

wo EKFs are calculated concurrently to estimate the SoC and capac-
ty. The equations for the state and parameter estimations are given
n Table 2.

To improve the performance of the filter, the equivalent model
hat represents the static and dynamic behaviour of the battery
hould be well constructed. The equivalent battery model con-
idered in Section 2.2 cannot realistically simulate the non-linear
ynamic behaviour of the plant due to the simplified dynamic
haracteristics [13]. On the other hand, the complicated battery
odelling in the simulation of the dynamic behaviour of the bat-

ery increases the order of the system, which makes it difficult to
mplement and operate the estimation algorithm in real time. Thus,
he measurement noise model is used to avoid errors between the
lant and model [4]. This model can serve to construct the simpli-
ed model and prevent the dual EKF algorithm from measurement
rrors caused by inaccurate modelling.
The state-space representation with difference equations of the
ual EKF is described in Eqs. (1)–(3). The symbols wx

k
and w�

k
epresent the process noise of the state filter and weight filter,
espectively, are assumed to be independent, zero-mean, Gaussian

able 2
ual EKF equations.

nitialization

�̂0 = E[�], P�0
= E[(� − �̂0)(� − �̂0)

T
]

x̂0 = E[x0], Px0 = E[(x − x̂0)(x − x̂0)T ]
ime update
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k
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oise with covariance matrices Q x
k

and Q �
k

. The measurement noise
k is assumed to be independent, zero-mean, Gaussian noise with
covariance matrix Rk. In this work, the state-space equation of the
attery model is derived as Eqs. (4)–(6), from the equivalent circuit
hown in Fig. 2 and �t is the time between step k and step k + 1,
hich in this case is 0.1 s:

k+1 = fx(xk, uk, �k) + wx
k (1)

k+1 = �k + w�
k (2)

k = hk(xk, uk, �k) + �k (3)

k+1 =
[

SoCk+1
Vd,k+1

]
=

[
1 0

0 1 − �t

CdRd

][
SoCk

Vd,k

]
+

⎡
⎢⎣− �t

Cn,k
�t

Cd

⎤
⎥⎦ ik (4)

k = [Cn,k] (5)

k = OCV(SoCk, Cn,k) − Vd,k − Ri ik (6)

The OCV in the measurement equation is implemented by the
roposed relationship of the OCV–SoC data. The measurement
atrix is derived from Eqs. (7)–(9). From Eqs. (9)–(11), the measure-
ent matrix of the capacity requires the total differential because

he OCV is a function of the SoC. In this case, the first term on the
ight-hand side of Eq. (9) is irrelevant to the capacity, as shown in
ig. 3, and its value is approximately zero. Hence, the realization of
he dual EKF can be simplified.

SoC
k = ∂Vt

∂SoC
= ∂OCV

∂SoC
(7)

Vd
k = ∂Vt

∂Vd
= −1 (8)

Cn
k = dOCV

dCn
= ∂OCV

∂Cn

∣∣∣∣
C−

n

+ ∂OCV
∂SoC−

k

dSoC−
k

dCn
(9)

dSoC−
k

dCn
=

∂f (SoC+
k−1, uk−1, Cn)

∂Cn
+

∂f (SoC+
k−1, uk−1, Cn)

∂SoC+
k−1

dSoC+
k−1

dCn

(10)

dSoC+
k−1

dCn
=

dSoC−
k−1

dCn
− Kk−1

dOCV−

dCn
(11)

. Control algorithm

As mentioned above, a modelling error occurs due to the sim-
lified battery model. Also, the dual EKF combines the two EKFs
nd calculates both filters concurrently, which creates difficulties in
mplementing the filter. Therefore, these problems are overcome by
he measurement noise model [4]. In this work, the measurement
oise model is extended to separate the state and weight filter, in
ddition to providing compensation for the model error.

.1. Measurement noise model for model error

A battery has complicated non-linear dynamic characteris-
ics. Thus, it is modelled as a series resistance, charge transfer,
ouble-layer and diffusion in the impedance-based-model [9].
he diffusion inside the battery can be represented as a Warburg

mpedance and is equivalent to a chain of RC elements in an electri-
al circuit. In this study, because the simplified battery model uses
ne RC parallel circuit, it gives rise to an error voltage in compari-
on with the plant. Therefore the measurement noise of the EKF is
pplied at the instant that a large voltage error occurs.
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Fig. 6. Algorithm

First, if a large voltage error exists in comparison with the plant,
uring a step current change, the measurement noise model is
pplied. The measurement noise model is expressed in Eq. (12).
he step time denotes the predefined value which decreases from
he initial value to zero. In this case, the gain is 0.1 and the initial
alue of the step time is 100:

k+1 = Rk × (1 + gain × step time) (12)

Second, the large voltage error can be increased when the cur-
ent is large. Because the parameter values differ from those of
he plant, the voltage error can increase for a large current. There-

ore, the measurement noise model is applied when a large current
s imposed. In Eq. (13), the large current denotes a reference set
urrent of 5 A while the gain is defined as 2:

k+1 = Rk × (1 + gain × (ik − large current)) (13)

t
T
t
v
p

Fig. 7. Experimen
hart of dual EKF.

.2. Measurement noise model for separation of both filters

The dual EKF combines both the state and weight filter. The mea-
urable data is only the terminal voltage of the battery. Thus, it is
ot easy to estimate the state and parameters at the same time.
s a result, the state and weight filters are separated selectively.
ecause the SoC represents the level of the charge, it is first esti-
ated at initial time. At this time, the estimated capacity is kept

o a priori value by setting the measurement noise of the weight
lter to a large value. After the set time, which is the initial time
equired to estimate the SoC, the state and weight filters are used
ccording to the conditions. The non-linear dynamic characteris-

ic of the battery is reduced during the small current variations.
hus, the measurement update of the weight filter is applied. At
his time, the measurement noise of the state filter is set to a large
alue. If the small variation of the current is maintained for a long
eriod of time, the measurement update of the state filter is used

tal set-up.
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conventional capacity =
1 − SoCcutoff

(15)

where SoCnew, modified capacity and SoCcutoff denote the modified
SoC, the capacity and the SoC value at the set voltage of the proposed
relation of the OCV–SoC, respectively.
Fig. 8. Current profile.

gain to prevent the SoC estimation from facing the disadvantages
f ampere-hour counting. The overall control algorithm is shown
n Fig. 6.

. Simulations and experimental results

To verify the proposed OCV–SoC and control algorithms of the
ual EKF, simulations and experiments were performed. The exper-

mental equipments was composed of a power supply, an electric
oad, a constant temperature and humidity chamber, an electro-
hemical impedance spectroscopy (EIS) instrument, and a personal
omputer (PC), as shown in Fig. 7. The experimental results from
ycling the battery are collected through the data-acquisition board
ithin the PC and are used as an input to the simulations. The
atlab/Simulink S-function is used for the simulations.
The charge–discharge cycling tests of the battery were carried

ut under the current profile shown in Fig. 8. The lithium-ion
atteries used in the experiment are 18650 type with a nominal
apacity of 1.3 Ah, i.e., not a typical HEV battery. Thus, the current
eference of the HEV automotive driving profile is scaled down to
he experimental conditions of Fig. 8. This current profile causes
ariation of the SoC for one hour and is used to complete a total
f eight cycles. Each cycle is different in terms of the number of
imes the profile is used. The SoC of the battery after complet-
ng each cycle is varied from 80 to 40% to verify the estimation
esults. Verification of the performance of the SoC estimation is
chieved through two methods. One is ampere-hour counting and
he other is a discharge test. The former is used for the dynamical
erification during each cycle and the latter is used for the final
erification after completing the cycles. Because the ampere-hour
ounting method has critical defects, as mentioned above, the bat-
ery is fully charged in order to minimize the accumulation error.
hus, because the SoC is reset to the correct value, which represents
00% SoC, before the next cycle, the ampere-hour counting method
an be considered to check the general variation trend of the SoC.
he estimation of the capacity is verified with the real capacity
uring all cycles. The real capacity is measured between the fully
ischarging and charging period between cycles and its values are

hown in Fig. 9.

The capacity and SoC measured before cycling are 1.29 Ah and
0%, respectively. Therefore, the estimated SoC and capacity using
he proposed methods are changed to the respective conventional

F
e
v

Fig. 9. Capacity variation during cycles.

alues, as expressed in Eqs. (14) and (15):

oC = 1 − (1 − SoCnew)(1 − SoCcutoff) (14)

modified capacity
ig. 10. SoC estimation results of proposed algorithm. (a) SoC estimation with initial
rror smaller than real value; (b) SoC estimation with initial error larger than real
alue.
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Table 3
SoC estimation results.

EKF Discharge test

Cycle 1 0.8164 0.8047
Cycle 2 0.7712 0.7496
Cycle 3 0.7164 0.6819
Cycle 4 0.6259 0.5909
Cycle 5 0.5171 0.4871
C
C
C

t
t
F
i
r
t
F
s
i
i
c

F
w
l

ycle 6 0.5511 0.5345
ycle 7 0.6282 0.6094
ycle 8 0.6943 0.6801

The SoC estimation results accurately track the real value within
he 60 s in spite of an initial value error, which is smaller than
he real value in Fig. 10(a) and larger than the real value in
ig. 10(b). Also, the general trend between ampere-hour count-
ng and the estimated value is almost the same. The performance
esults through the discharge test after the cycles come within
he specifications, specifically within ± 5%, as shown in Table 3. In

ig. 11, the results of the capacity estimation with an initial value
maller than the real value in Fig. 11(a) and larger than the real value
n Fig. 11(b) are shown. Both results converge to the real capac-
ty within an error range of 5%. In order to estimate the SoC and
apacity simultaneously, the sequence separation of the state and

ig. 11. Capacity estimation results of proposed algorithm. (a) Capacity estimation
ith initial error smaller than real value; (b) capacity estimation with initial error

arger than real value.
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ig. 12. SoC and capacity estimation results excluded the separation sequence of
he proposed method. (a) SoC estimation with initial error smaller than real value,
b) capacity estimation with initial error smaller than real value.

eight filter is used. Although it takes a long time for the conver-
ence by the proposed methods, the accuracy of the estimation is
reatly improved. In Fig. 12, the estimation result excluded only the
equence separation under the same condition and shows that the
stimation performance cannot be guaranteed by the algorithm.
owever, the SoC and capacity estimation results of Figs. 10 and 11

epresent the validity of the proposed methods.

. Conclusion

An estimation method using the dual EKF with a modified
CV–SoC is proposed to overcome the variation in conventional
CV–SoC. An explanation of the OCV–SoC relationship and the dual
KF algorithm is given together with experimental results. From
he proposed methods, the implementation of the dual EKF can
e simplified and the SoC and the capacity can be estimated at
he same time. The estimation results of the dual EKF satisfy the
pecifications within ±5%.
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